

Our Ref: SHF.1132.260.HY.L.001.A

Your Ref: SBC/2021/087161

FAO: Tom Hawes

Email: suds@kent.gov.uk

Date: 14th October 2022

Dear Tom,

Consultation Response - 21/505498/OUT Land Off Swanstree Avenue, Sittingbourne, Kent, ME10 4LU

Introduction

Enzygo Ltd produced a Flood Risk Assessment (FRA - Reference: SHF.1132.260.HY.R.001.B, October 2021) in support of a planning application (Reference: 21/505498/OUT) for a proposed residential development located on land at the above 'Site'.

Following submission of the FRA, the Lead Local Flood Authority (LLFA – Kent County Council) issued a consultation response letter with comments (included in Attachment 1) requiring the submission of further information.

1. Whilst it is appreciated that infiltration testing has been completed to BRE Digest 365, if infiltration was to be used at the BH1 location then the lowest infiltration rate measured there would be the 2.92x10-5m/s test and we would expect to see this used as a side infiltration coefficient not a base.

The BH soakaway tests were carried out at varying depths. For BH1 these depths were 5, 8, and 10m below ground level (mBGL) see Attachment 2. As the drainage strategy proposes 15m deep BH soakaways, all three results have been inputted as side infiltration rates at the corresponding height from the borehole invert.

Soakaway Test Depth (mBGL)	Height above BH Invert (m)	Side Infiltration Rate (m/hr)
5	6.8	0.105
8	3.8	0.612
10	0	1.548

The base infiltration rate is set to 0.0 m/hr.

2. The half drain time for the 1 in 100 year plus 40% Climate Change event is excessive at 39.33hrs. The calculations for the 1 in 2 and 1 in 30 year storms should also be provided to assess the half drain times in these events.

Updating the base and side infiltration rates has reduced the half drain time to 779 minutes, the updated calculations are included in Attachment 3. This is less than the 24-hour half drain guidance therefore, the calculations for the 1 in 2 and 1 in 30- year storms are no longer required.

3. As mentioned in Section 6.5.14 and as per KCC Pre-Application advice, we would expect to see details of other SuDS features at the next stage when a detailed layout has been produced.

Once a detailed layout has been provided, Enzygo will be able to advise other suitable SuDS features to manage surface water runoff at source and conveyance through the Site.

Closure

We trust that the details presented herein are sufficient to remove the holding objection. If, for any reason you should have any queries or comments, please contact me.

Samuel House, 5 Fox Valley Way Stocksbridge, Sheffield, S36 2AA

Yours sincerely,

Faul Haber

Dr Paul Hardwick *PhD, BSc (Hons), FGS, FRSA* Technical Director

Enzygo Ltd

Attachment 1 - Kent County Council Letter

Flood and Water Management Invicta House Maidstone Kent ME14 1XX Website: www.kent.gov.uk/flooding Email: suds@kent.gov.uk Tel: 03000 41 41 41 Our Ref: SBC/2021/087161 Date: 11 November 2021

Application No: 21/505498/OUT

Emma Gore

Swale House

Sittingbourne

East Street

Kent ME10 3HT

Swale Borough Council

Location: Land Off Swanstree Avenue Sittingbourne Kent ME10 4LU

Proposal: Outline planning application for up to 135no. dwellings with public open space, landscaping and sustainable drainage system (SuDS) and vehicular access point (All matters reserved except for means of access).

Thank you for your consultation on the above referenced planning application.

This application is supported by a Flood Risk Assessment produced by Enzygo (September 2021). The method of discharging surface water is via infiltration using deep bore soakaways.

Kent County Council as Lead Local Flood Authority have the following comments:

1. Whilst it is appreciated that infiltration testing has been completed to BRE Digest 365, if infiltration was to be used at the BH1 location then the lowest infiltration rate measured there would be the 2.92×10^{-5} m/s test and we would expect to see this used as a side infiltration coefficient not a base.

2. The half drain time for the 1 in 100 year plus 40% Climate Change event is excessive at 39.33hrs. The calculations for the 1 in 2 and 1 in 30 year storms should also be provided to assess the half drain times in these events.

3. As mentioned in Section 6.5.14 and as per KCC Pre-Application advice, we would expect to see details of other SuDS features at the next stage when a detailed layout has been produced.

We would recommend that further information is provided to respond to the comments above before the condition is approved.

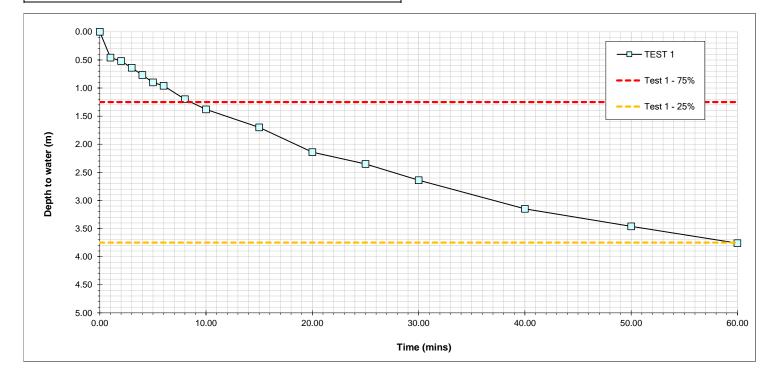
This response has been provided using the best knowledge and information submitted as part of the planning application at the time of responding and is reliant on the accuracy of that information.

Yours faithfully,

kent.gov.uk

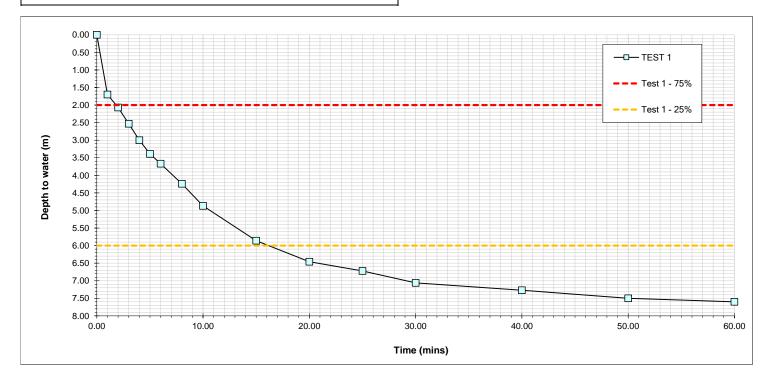
Tom Hawes

Flood Risk Project Officer Flood and Water Management

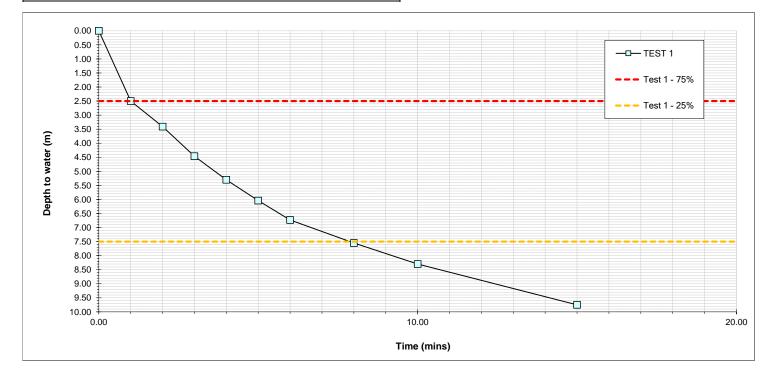


Attachment 2 - Borehole soakaway testing

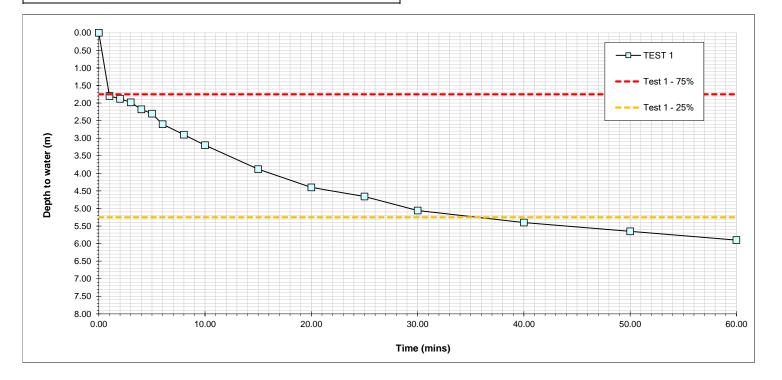
enzyg		Site Job Number Date of Test	Swanstree Avenue SHF.1132.260 26/07/2021		Soakaway Nu Diameter Casing Depth Borehole Dep		BH1-1 0.15 4.00 5.00	m m m
		BOREHOLE SOIL INFILTRA	TION RATE TEST		Groundwater	Level	Dry	m
	-	See B.R.E. Digest 365, 1991,				•		
Remarks -		TEST 1		EST 2			TEST 3	
Please refer to BH1 log for ground conditions.	Time(min)	Depth to Water (m)	Time(min)	Depth to W	ater (m)	Time(min)	Depth to	o Water (m)
	0.0	0.00						
	1.0	0.46						
	2.0	0.52						
	3.0	0.64						
	4.0	0.77						
	5.0	0.90						
	6.0	0.96						
	8.0	1.20						
	10.0	1.38						
	15.0	1.70						
	20.0	2.14						
	25.0	2.35						
	30.0	2.64						
	40.0	3.15						
	50.0	3.46						
	60.0	3.76						
Effective Storage Depth m		5.00						
75% Effective Storage Depth m		3.75						
o 1		3.75 1.25						
		1.25						
25% Effective Storage Depth m (i.e. depth below GL) m								
		3.75						
Effective Storage Depth 75%-25% m		2.50						
Time to fall to 75% effective depth mins		8.50						
Time to fall to 25% effective depth mins		60.00						
		00.00						
V (75%-25%) m3		0.04						
a m2		0.49						
t (75%-25%) mins		51.50						
SOIL INFILTRATION RATE m/s		2.92E-05						



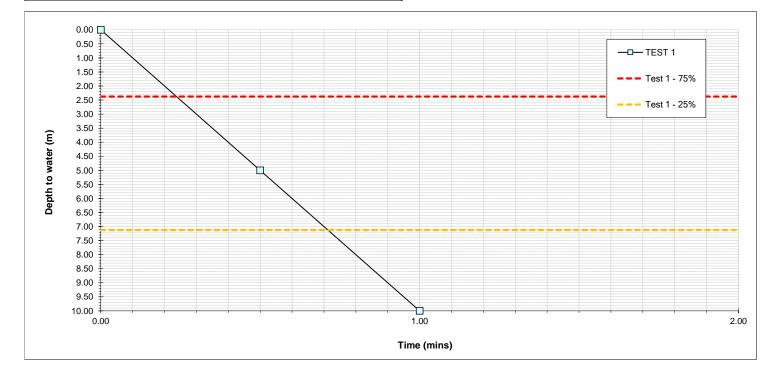
enzygo		Site Job Number Date of Test BOREHOLE SOIL INFILTRA	Swanstree Avenue SHF.1132.260 26/07/2021 TION RATE TEST	Diameter Casing Dept Borehole De	umber h pth r Level	BH1-2 0.15 7.00 8.00 Dry	m m m
		See B.R.E. Digest 365, 1991.	, Soakaway Design.			-	
Remarks -		TEST 1	TEST 2	•		TEST 3	
Please refer to BH1 log for ground conditions.	Time(min)	Depth to Water (m)	Time(min) Depth to	Water (m)	Time(min)	Depth t	o Water (m)
	$\begin{array}{c} 0.0\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 8.0\\ 10.0\\ 15.0\\ 20.0\\ 25.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ \end{array}$	0.00 1.70 2.07 2.53 3.00 3.39 3.67 4.24 4.87 5.86 6.46 6.72 7.06 7.27 7.50 7.60					
Effective Storage Depthm75% Effective Storage Depthm(i.e. depth below GL)m25% Effective Storage Depthm(i.e. depth below GL)mEffective Storage Depth 75%-25%mTime to fall to 75% effective depthminsTime to fall to 25% effective depthminsV (75%-25%)m3am2t (75%-25%)mins		8.00 6.00 2.00 2.00 6.00 4.00 1.80 16.00 0.07 0.49 14.20					
SOIL INFILTRATION RATE m/s		1.70E-04					



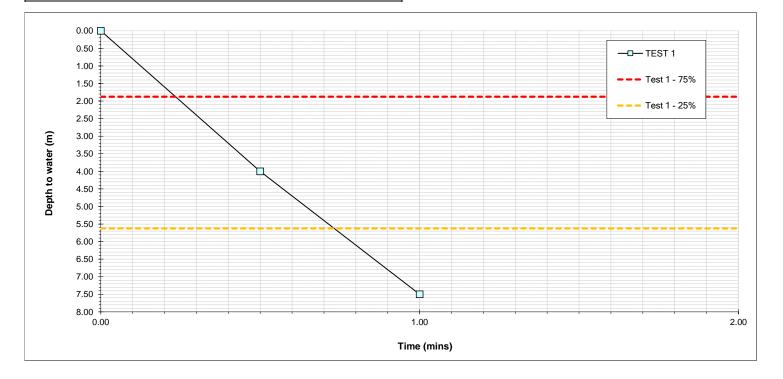
		Site Job Number Date of Test BOREHOLE SOIL INFILTRA	Swanstree Avenue SHF.1132.260 26/07/2021 TION RATE TEST		Diameter Casing Depti Borehole De	umber h pth	BH1-3 0.15 9.00 10.00 Dry	m m m
	_	See B.R.E. Digest 365, 1991	, Soakaway Design.					
Remarks -		TEST 1		TEST 2			TEST 3	
Please refer to BH1 log for ground conditions.	Time(min)	Depth to Water (m)	Time(min)	Depth to W	ater (m)	Time(min)	Depth to	o Water (m)
	0.0 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 15.0	0.00 2.50 3.41 4.46 5.30 6.04 6.73 7.55 8.30 9.75						
Effective Storage Depthm75% Effective Storage Depthm(i.e. depth below GL)m25% Effective Storage Depthm(i.e. depth below GL)mEffective Storage Depth 75%-25%mTime to fall to 75% effective depthminsTime to fall to 25% effective depthminsV (75%-25%)m3am2t (75%-25%)mins		10.00 7.50 2.50 2.50 7.50 5.00 1.00 8.00 0.09 0.49 7.00						
SOIL INFILTRATION RATE m/s		4.30E-04						



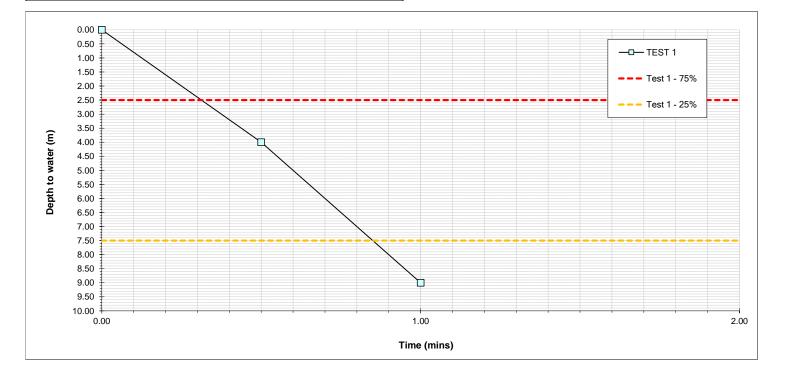
enzygo		Site Job Number Date of Test	Swanstree Avenue SHF.1132.260 26/07/2021	Diameter Casing Dept Borehole De	pth	BH2-1 0.15 5.00 7.00	m m m
		BOREHOLE SOIL INFILTRA See B.R.E. Digest 365, 1991		Groundwate	r Level	Dry	m
Remarks -		TEST 1	TEST 2			TEST 3	
Please refer to BH2 log for ground condition	s. Time(min)			oth to Water (m)	Time(min)		o Water (m)
	$\begin{array}{c} 0.0\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 8.0\\ 10.0\\ 15.0\\ 20.0\\ 25.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ \end{array}$	0.00 1.80 1.88 1.98 2.18 2.30 2.60 2.90 3.20 3.88 4.40 4.66 5.06 5.40 5.65 5.90				·	
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth 75%-25% m Time to fall to 75% effective depth mir Time to fall to 25% effective depth mir V (75%-25%) m a m2 t (75%-25%) mir	s s 2	7.00 5.25 1.75 1.75 5.25 3.50 1.00 36.00 0.06 0.96 35.00					
SOIL INFILTRATION RATE m/	6	3.07E-05					



enzyg•	Site Job Number Date of Test BOREHOLE SOIL INFILTRA		Soakaway Number Diameter Casing Depth Borehole Depth Groundwater Level	BH2-2 0.15 m 7.50 m 9.50 m Dry m
	See B.R.E. Digest 365, 1991,			
Remarks -	TEST 1	TEST 2		TEST 3
Please refer to BH3 log for ground conditions.	Time(min) Depth to Water (m) 0.0 0.00 0.5 5.00 1.0 10.00	Time(min) Depth to W	'ater (m) Time(min)	Depth to Water (m)
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth m Effective Storage Depth m Time to fall to 75% effective depth mins Time to fall to 75% effective depth mins V (75%-25%) m3 a m2 t (75%-25%) mins SOIL INFILTRATION RATE m/s	9.50 7.13 2.38 2.38 7.13 4.75 2.30 7.20 0.08 0.96 4.90 2.97E-04			



			Site Job Number Date of Test	Swanstree Avenue SHF.1132.260 26/07/2021		Diameter Casing Dept	umber h pth	BH3-1 0.15 5.50 7.50	m m m
			BOREHOLE SOIL INFILTRA			Groundwate	r Level	Dry	m
Remarks -			See B.R.E. Digest 365, 1991 TEST 1	, Soakaway Design.	TEST 2			TEST 3	
Please refer to BH3 log for ground condi	itions.	Time(min)	Depth to Water (m)	Time(min)	Depth to W	ater (m)	Time(min)		o Water (m)
		0.0 0.5 1.0	0.00 4.00 7.50						
Effective Storage Depth 75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25% Time to fall to 75% effective depth Time to fall to 25% effective depth V (75%-25%) a t (75%-25%)	m m m m m m m m m s m 2 mins		7.50 5.63 1.88 1.88 5.63 3.75 0.24 0.74 0.07 0.96 0.50						
SOIL INFILTRATION RATE	m/s		2.30E-03						



	Site Job Number Date of Test	SHF.1132.260	Diameter Casing Dept	lumber h pth	BH3-2 0.15 8.50 10.00	m m m
		OIL INFILTRATION RATE TEST	Groundwate	r Level	Dry	m
Remarks -	See B.R.E. Dig TEST 1	est 365, 1991, Soakaway Design.	TEST 2		TEST 3	
Please refer to BH3 log for ground conditions.	Time(min) Depth to V	Vater (m) Time(min)	Depth to Water (m)	Time(min)		o Water (m)
	0.0 0.0 0.5 4.0 1.0 9.0	00				
Effective Storage Depthm75% Effective Storage Depthm(i.e. depth below GL)m25% Effective Storage Depthm(i.e. depth below GL)mEffective Storage Depth 75%-25%mTime to fall to 75% effective depthminsTime to fall to 25% effective depthminsV (75%-25%)m3am2t (75%-25%)mins	10.0 7.5 2.5 7.5 5.0 0.3 0.8 0.0 0.7 0.5	50 50 50 50 50 50 50 50 50 55 55 55 55 5				
SOIL INFILTRATION RATE m/s	3.76	E-03		1		

Attachment 3 – Drainage Calculations

Enzygo Ltd							Page
amuel House			Swanstre	e Ave, S	ittingbo	ourne	
5 Fox Valley Wa	У		Deep Bor	e Soakaw	ay		
tocksbridge S	heffield S30	6 1	Northern	Section	L		Mice
Date 14/10/2022	11:16		Designed	by LA			
File DBSA NORTH	ERN REV B.SRO	cx	Checked	by			Drai
KP Solutions				ontrol 2	020.1.3		
Sum	<u>mary of Resul</u>	lts fo	<u>r 100 y</u> e	ar Retur	n Period	d (+40응)	
	Hal	lf Drai	n Time :	779 minute	es.		
	Storm	Max	Max	Max	Max	Status	
	Event	Max Level		Max Infiltrati		Status	
	Lvene	(m)	(m)	(1/s)	(m ³)		
	15 min Summer				.9 520.2		
	30 min Summer 60 min Summer				.9 685.7		
	120 min Summer				.9 844.9 .9 1006.3		
	180 min Summer				.9 1111.1		
	240 min Summer				.9 1188.0		
	360 min Summer				.9 1294.1		
	480 min Summer				.9 1360.5		
	600 min Summer			17	.9 1396.4	ΟK	
	720 min Summer	28.930	10.930	17	.9 1413.9	ΟK	
	960 min Summer	28.935	5 10.935	17	.9 1419.5	ΟK	
1	440 min Summer	28.898	3 10.898	17	.9 1371.2	O K	
2	2160 min Summer	28.808	3 10.808	17	.9 1254.7	O K	
	2880 min Summer				.9 1127.9		
	1320 min Summer				.9 875.5		
	5760 min Summer				.9 665.2		
	200 min Summer				.9 501.8		
	3640 min Summer)080 min Summer				.9 377.0 .9 283.8		
ΤC	15 min Winter				.9 586.5		
	Sto	rm	Rain	Flooded 5	lime-Peak		
	Eve	nt	(mm/hr)	Volume	(mins)		
				(m³)			
	15 mir	Summe	r 138.005	0.0	43		
	10 IIIII		r 90.843	0.0	40		
	30 mir	Summe		0 0	56		
					56 84		
	60 mir	Summe	r 56.736	0.0			
	60 min 120 min	Summe Summe		0.0	84		
	60 min 120 min 180 min	Summe Summe Summe	r 56.736 r 34.984	0.0 0.0 0.0	84 140		
	60 mir 120 mir 180 mir 240 mir 360 mir	Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919	0.0 0.0 0.0 0.0 0.0	84 140 196		
	60 mir 120 mir 180 mir 240 mir 360 mir	Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006	0.0 0.0 0.0 0.0 0.0	84 140 196 254		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir	Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163	0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir	Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir	Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir	Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 254 368 484 600 660 786 1044		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701 r 2.125	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644 3376		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701 r 2.125 r 1.774	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644 3376 4104		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 240 mir 240 mir 240 mir 240 mir 5760 mir 720 mir 8640 mir	 Summe 	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701 r 2.125 r 1.774 r 1.537	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644 3376 4104 4768		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701 r 2.125 r 1.774 r 1.537 r 1.367	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644 3376 4104 4768 5448		
	60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 56.736 r 34.984 r 26.611 r 22.006 r 16.919 r 14.068 r 12.163 r 10.774 r 8.831 r 6.558 r 4.785 r 3.794 r 2.701 r 2.125 r 1.774 r 1.537	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	84 140 196 254 368 484 600 660 786 1044 1452 1856 2644 3376 4104 4768		

nzygo Ltd							Page 2
amuel House		S	wanstre	ee Ave, Si	ttingbo	ourne	
Fox Valley Way		De	еер Вог	re Soakawa	У		
tocksbridge Sheffi	eld S36	. No	ortherr	n Section			Micro
ate 14/10/2022 11:1	6	De	esigned	l by LA			
ile DBSA NORTHERN R	EV B.SRCX	CI	hecked	by			Drain
P Solutions		S	ource (Control 20	20.1.3		
<u>Summary</u>	of Results	for	<u>100 y</u> e	ear Returr	<u>n Perioc</u>	<u>d (+40응)</u>	
st	orm Ma	ax	Max	Max	Max	Status	
Ev	ent Lev	vel	Depth	Infiltratio	n Volume		
	(1	m)	(m)	(1/s)	(m³)		
30 m:	in Winter 28.	438	10.438	17.	9 773.1	ОК	
60 m:	in Winter 28.	577	10.577	17.	9 954.1	ОК	
120 m:	in Winter 28.	721	10.721	17.	9 1141.9	ОК	
180 m:	in Winter 28.	817	10.817	17.	9 1266.6	ОК	
240 m:	in Winter 28.	889	10.889	17.	9 1360.1	ОК	
360 m:	in Winter 28.	992	10.992	17.	9 1493.6	O K	
480 m:	in Winter 29.	060	11.060	17.	9 1582.2	ОК	
600 m:	in Winter 29.	101	11.101	17.	9 1636.1	ΟK	
720 m:	in Winter 29.	124	11.124	17.	9 1665.5	O K	
960 m:	in Winter 29.	128	11.128	17.	9 1670.2	O K	
1440 m:	in Winter 29.	073	11.073	17.	9 1599.2	O K	
2160 m:	in Winter 28.	943	10.943	17.	9 1430.0	O K	
2880 m:	in Winter 28.	796	10.796	17.	9 1239.4	ΟK	
4320 m:	in Winter 28.	506	10.506	17.	9 861.8	O K	
5760 m:	in Winter 28.	269	10.269	17.	9 554.4	O K	
7200 m:	in Winter 28.	098	10.098	17.	9 331.1	O K	
8640 m:	in Winter 27.	487	9.487	17.	8 193.8	O K	
10080 m:	in Winter 24.	630	6.630	16.	9 135.4	O K	
	Storm Event			Flooded Ti Volume (m³)	ime-Peak (mins)		
	Event		(mm/hr)	Volume (m³)	(mins)		
	Event 30 min Win		(mm/hr) 90.843	Volume (m ³) 0.0	(mins) 56		
	Event 30 min Wir 60 min Wir	nter	(mm/hr) 90.843 56.736	Volume (m ³) 0.0 0.0	(mins) 56 84		
	Event 30 min Wir 60 min Wir 120 min Wir	nter nter	(mm/hr) 90.843 56.736 34.984	Volume (m ³) 0.0 0.0 0.0	(mins) 56 84 140		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir	nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 56 84 140 196		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir	nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir	nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252 364		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir	nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252 364 478		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir	nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252 364 478 590		
	Event 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 600 min Wir	nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252 364 478		
	Event 30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 56 84 140 196 252 364 478 590 700		
	Event 30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 960 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2480 min Win 4320 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 5760 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552		
	Event 30 min Win 60 min Win 120 min Win 120 min Win 240 min Win 240 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192		
	Event 30 min Wir 60 min Wir 120 min Wir 120 min Wir 240 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 240 min Wir 240 min Wir 240 min Wir 240 min Wir 430 min Wir 5760 min Wir 8640 min Wir	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		
	Event 30 min Wir 60 min Wir 120 min Wir 120 min Wir 240 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 240 min Wir 240 min Wir 240 min Wir 240 min Wir 430 min Wir 5760 min Wir 8640 min Wir	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		
	Event 30 min Wir 60 min Wir 120 min Wir 120 min Wir 240 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 240 min Wir 240 min Wir 240 min Wir 240 min Wir 430 min Wir 5760 min Wir 8640 min Wir	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		
	Event 30 min Wir 60 min Wir 120 min Wir 120 min Wir 240 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 240 min Wir 240 min Wir 240 min Wir 240 min Wir 430 min Wir 5760 min Wir 8640 min Wir	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		
	Event 30 min Wir 60 min Wir 120 min Wir 120 min Wir 240 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 240 min Wir 240 min Wir 240 min Wir 240 min Wir 430 min Wir 5760 min Wir 8640 min Wir	nter nter nter nter nter nter nter nter	(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		
	30 min Win 60 min Win 120 min Win 120 min Win 120 min Win 240 min Win 600 min Win 960 min Win 2160 min Win 2320 min Win 5760 min Win 7200 min Win 10080 min Win	nter nter nter nter nter nter nter nter	<pre>(mm/hr) 90.843 56.736 34.984 26.611 22.006 16.919 14.068 12.163 10.774 8.831 6.558 4.785 3.794 2.701 2.125 1.774 1.537 1.367</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 56 84 140 196 252 364 478 590 700 906 1126 1584 2020 2828 3552 4192 4760		

Enzygo Ltd							Page 3	
Samuel House	Sw	anstre	e Ave,	, Sitt	ingbou	urne		
5 Fox Valley Way	De	ep Bor	e Soal	kaway				
Stocksbridge Sheffield S36	. No	rthern	Micro					
Date 14/10/2022 11:16	De	signed						
File DBSA NORTHERN REV B.SRCX	Ch	ecked	by				Drainago	
XP Solutions	So	urce C	ontro	1 2020	0.1.3			
1	Rainf	all De	tails					
Rainfall Mo						FEH		
Return Period (yea						100		
FEH Rainfall Ver: Site Loca		CB 50113	2 1626	29 10 0	-	2013 2629		
Data 1		50 39113	2 1020	27 10 .		oint		
Summer Sto		▲						
Winter Sto				Yes				
Cv (Summ Cv (Wint	,					.750 .840		
CV (WIN Shortest Storm (m.	,				0	.840 15		
Longest Storm (m:	,				1	0080		
Climate Chang	ge %					+40		
<u>1</u>	ime 2	Area D:	iagram	<u>1</u>				
T	otal A	Area (ha) 2.15	0				
Time (mins) Area					(mins)			
From: To: (ha)	From:	To:	(ha)	From:	To:	(ha)		
0 5 0.360	10	15	0.358	20	25	0.358		
5 10 0.358	15	20	0.358	25	30	0.358		

Enzygo Ltd		Page 4
Samuel House	Swanstree Ave, Sittingbourne	
5 Fox Valley Way	Deep Bore Soakaway	
Stocksbridge Sheffield S36	Northern Section	Mirro
Date 14/10/2022 11:16	Designed by LA	Drainage
File DBSA NORTHERN REV B.SRCX	Checked by	Diamade
XP Solutions	Source Control 2020.1.3	1

Model Details

Storage is Online Cover Level (m) 29.800

Deep Bore Soakaway Structure

Chamber Invert Level (m) 28.000 Borehole Depth (m) 10.000 Chamber Diameter/Length (m) 10.000 Infiltration Coefficient Base (m/hr) 0.00000 Chamber Width (m) 130.000 Safety Factor 2.0 Borehole Diameter (m) 5.100

	Side		Side		Side		Side
Depth	Infil.	Depth	Infil.	Depth	Infil.	Depth	Infil.
(m)	Coef.	(m)	Coef.	(m)	Coef.	(m)	Coef.
	(m/hr)		(m/hr)		(m/hr)		(m/hr)